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 Roots of the Derivative of a Polynomial

 Dan Romik

 1. INTRODUCTION. The object of this note is to show a simple but amusing result
 on the roots of the polynomial d/dx(x(x - 1)(x - 2)(x - 3)... (x - n)) that I dis-
 covered while working on explicit formulas for the Markov transform. I describe the
 result and then mention briefly how it is related to this beautiful subject. I hope that
 the interested reader will consult [2] or [3] for additional information.

 2. THE RESULT. Consider the polynomial pn(x) = x(x - 1)(x - 2) ... (x - n). Its
 derivative has a root between each two adjacent roots of pn, so we may write

 n-1

 pn(x) =n (x - (k+ an,k)),
 k=0

 where the an,k, the fractional parts of the roots of pn, are between 0 and 1. A plot of
 the an,k as a function of k reveals the following picture (in this example, n = 30):
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 Figure 1. Fractional parts of the roots of p0.

 Figure 1 suggests that for k properly scaled the cxn,k approach the graph of some
 continuous function as n -+ oo. Indeed, this is true, and the function is given by The-
 orem 1:

 Theorem 1. For all t in (0, 1),

 1 I l-t\\
 lim an,Lt.nJ = - arccot - log - .
 n-oo 7 7"T t

 (1)

 Here, and later, arccot signifies the branch of the inverse cotangent function taking
 values between 0 and ir, and IxJ denotes the largest integer not greater than x. Figure 2
 shows the superposition of the function on the right-hand side of (1) on the roots.
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 Figure 2. Fractional parts of the roots of p3 and the limiting curve.

 Proof Let t satisfy 0 < t < 1, and write k = [t • n]. The k + an,k are the solutions of
 the equation

 Pn x_ 1 = 0.
 pn (x) 1x

 In other words, we have

 S 1 1 =

 j=0 on,k + k - j j=k+l -an,k + j - k

 or, transforming the indices,

 k n-k-1 (2)
 y - -. = O. (2)

 j=o an,k +j j= (1 - an,)+ j

 This equation for ank cannot be solved explicitly (otherwise we would have explicit
 expressions for an,,k), but an asymptotic solution is easily obtained using a well-known

 asymptotic formula that is related to Euler's product formula for the gamma function:

 m 1 F'(u)
 S -= --(u) + log(m) + o(1) (m - o). (3)

 = ou+j F(u)

 Relation (3), which holds for all u in C \ Z, transforms (2) to

 ('(1) m Con,k) n-k-l 1
 F (aF,k) + = log + o(1) (n - co). (4)
 F (on,) (-n, j) k

 The right-hand side of (4) is the same as log((l - t)/t) + o(l), since k = [t • nJ. The
 left-hand side is exactly nr cot(7rt,k) (to see this, take the logarithmic derivative of the
 identity F(u)F( - u) = n/ sin(2ru)). Thus, we have shown that

 7 cot(rca,k) = log( + o(1) (n -- co).
 t
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 The last statement can be rephrased

 1 1 (1-t
 Gxn,k = - arccot - log + o(1) (n -> oo),

 2r \7 tJ

 as claimed. *

 3. THE MARKOV TRANSFORM. Theorem 1 can be thought of as a special case
 of an inversion formula for the Markov transform. The Markov transform is a corre-
 spondence between measures r and / on R defined by the equation

 I d(u) = exp (flog - dr(u) (Imz # 0). (5)
 Jr z-u V z-u

 Here T is an interlacing measure (i.e., r is a signed measure of total measure r (R) = 1
 that satisfies 0 < T((-oo, x]) < 1 for each x in R), and /z, the Markov transform of r,
 is a probability measure, whose existence is guaranteed (see [2]).
 Equation (5) is fascinating for the interplay it expresses between the additive and

 multiplicative structures on its two sides. A natural question that arises is how to calcu-
 late the transform explicitly in the important case where 4/ is an absolutely continuous
 measure. I recently obtained the following partial answer [3]: If /z (hence, also r) is
 supported on an interval [a, b], then under some fairly general conditions it is the case
 that

 (i) (x) = - sin (xrr([a, x])) exp log - dr(u) ,
 dx a x - u

 (ii) ([a x 1 ( 1 fbd (u) (ii) r [a, x]) = - arccot d(x) i -)'

 where the integrals are principal-value integrals. The expression on the right side of (ii)
 reminds us of the limiting curve in Theorem 1. In fact, Theorem 1 is the special case
 in which E/ is the uniform measure on [0, 1] (i.e., Lebesgue measure), so the limiting
 curve is simply the inverse Markov transform of the uniform law! It was while trying
 to find the inverse formula (ii) for the Markov transform that I arrived at the calculation
 in Theorem 1. Generalizing the same asymptotic calculation, it is not hard to obtain
 the general formula (ii) from there.

 4. FURTHER REMARKS. Equation (5) was first studied by Markov, who consid-
 ered it in the context of continued fraction expansions. It has since been applied to mo-
 ment problems, means of Dirichlet processes, the growth of random Young diagrams,
 and in other places. Kerov's survey [2] is a good reference. Regarding the explicit for-
 mulas, (i) was proved by Cifarelli and Regazzini [1] in the case where r is a probability
 measure and was conjectured by Kerov to hold in the general case. Note that it is not
 at all obvious that the expression on the right-hand side of (i) is a probability density.
 Thus, substituting various expressions for r gives rise to some amusing and perhaps
 unknown integration identities.

 REFERENCES

 1. D. M. Cifarelli and E. Regazzini, Distribution functions of means of a Dirichlet process, Ann. Statist. 18
 (1990) 429-442.

 © THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 112 68

This content downloaded from 130.126.162.126 on Sun, 07 Jan 2018 22:15:42 UTC
All use subject to http://about.jstor.org/terms



 2. S. V. Kerov, Interlacing measures, in Kirillov's Seminar on Representation Theory, Amer. Math. Soc.
 Transl. Ser. 2, no. 181, American Mathematical Society, Providence, 1998, pp. 35-83.

 3. D. Romik, Explicit formulas for hook walks on continual Young diagrams, Adv. Appl. Math. 32 (2004)
 625-654.

 Laboratoire de Probabilitis, Universite Paris 6

 Current address:

 Department of Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel

 romik@ wisdom. weizmann.ac. il

 Quaternions and Rotations in E4

 Joel L. Weiner and George R. Wilkens

 1. INTRODUCTION. In 1843, Sir William Rowan Hamilton invented the quater-
 nion algebra, which is customarily denoted H in his honor. Soon after, people rec-
 ognized that quaternions could be used to represent rotations in E3. In 1855, Arthur
 Cayley discovered that quaternions could also be used to represent rotations in E4.
 This note explores Cayley's representation. Ultimately we use it to show that any rota-
 tion in E4 is a product of rotations in a pair of orthogonal two-dimensional subspaces,

 a result first proved by Edouard Goursat [3].
 In section 2 we review the algebraic structure of H and show that H has a natural

 inner product that allows us to identify it with four-dimensional Euclidean space E4. In
 section 3 we show that a pair p and q of unit vectors (also called unit quaternions) in H
 determines a rotation Cp,q : H -> H. According to Goursat's result, Cp,q is a product
 of rotations in a pair of orthogonal planes. By this we mean the following: there exist
 rotations R1, R2 : H -* H and a pair of orthogonal planes Vi and V2 in H, such that
 the restrictions R1I v2 and R2 I v are identities on their respective planes and

 Cp,q = R o R2 = R2 O R1.

 Thus, H = V1 e V2, where V1 I V2, and Cp,q rotates vectors in the plane V1 through
 a determined angle at and vectors in the plane V2 through a determined angle a2.

 The principal goals of this note are to prove Theorems 1 and 2, which are stated
 precisely in section 5. Theorem 1 not only proves Goursat's result for Cp,q, but also
 shows that one can easily determine the planes V1 and V2 and the angles at and a2 in
 terms of p and q. Theorem 2 establishes that every rotation in E4 can be represented by
 some Cp,q. Together, these theorems prove Goursat's result for every four-dimensional
 rotation.

 The observation that Cp,q(V) = Vi (i = 1, 2) motivates the method of proof. The

 Vi are known as invariant subspaces for Cp,q. If we wish to see that Cp,q is indeed a
 product of rotations, it is natural to look first for invariant subspaces of that transfor-

 mation. In section 4 we recall some elementary results from the theory of ordinary
 differential equations that are related to subspaces and two-dimensional rotations. Fi-

 nally, in section 5, we apply these results to find the Cp,q-invariant subspaces and the
 rotation angles.
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